
ECE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE MATERIALS

ECT 303: DIGTAL SIGNAL PROCESSING

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ECE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

⧫ Established in: 2002

⧫ Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

⧫ Approved by AICTE New Delhi and Accredited by NAAC

⧫ Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance

towards sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic

gadgets (things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective

fields of interest later.

4) Promoting leading edge Research & Development through collaboration with academia

& industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry /

technical profession through global, rigorous education and prepare the students to practice and

innovate recent fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering

fundamentals required to solve engineering problems and to have strong practical knowledge

required to design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

ECE DEPARTMENT, NCERC PAMPADY Page 3

PEO4. To provide student with an academic environment aware of excellence, effective

communication skills, leadership, multidisciplinary approach, written ethical codes and the life-

long learning needed for a successful professional career.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

ECE DEPARTMENT, NCERC PAMPADY Page 4

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for

Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high

quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES
EC 405

SUBJECT CODE: EC 308

COURSE OUTCOMES

C303.1 State and prove the fundamental properties and relations relevant to DFT

and solve basic problems involving DFT based filtering methods

C303.2 Compute DFT and IDFT using DIT and DIF radix-2 FFT algorithms

C303.3 Design linear phase FIR filters and IIR filters for a given specification

C303.4 Illustrate the various FIR and IIR filter structures for the realization of the

given system function, Decimation and interpolation in both time and

frequency domains

C303.5 Explain the architecture of DSP processor (TMS320C67xx) and the finite

word length effects

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C303.1 3 3 3 3 3 3 2 1

C303.2 3 3 3 3 3 3 2 1

C303.3 3 3 3 3 3 3 2 1

C303.4 3 3 3 3 3 3 2 1

C303.5 3 3 3 3 3 3 2 1

C303 3 3 3 3 3 3 2 1

ECE DEPARTMENT, NCERC PAMPADY Page 5

CO’S PSO1 PSO2 PSO3

C303.1 3 3 1

C303.2 3 3 1

C303.3 3 3 1

C303.4 3 3 1

C303.5 3 3 1

C303 3 3 1

SYLLABUS

ECE DEPARTMENT, NCERC PAMPADY Page 6

ECE DEPARTMENT, NCERC PAMPADY Page 7

ECE DEPARTMENT, NCERC PAMPADY Page 8

ECE DEPARTMENT, NCERC PAMPADY Page 9

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Derive the relationship of DFT to Fourier transform CO1 K3 4

2 Explain the following properties of DFT a) Circular

Convolution b) Time Reversal

CO1 K2 8

3 Derive the relationship of DFT to Z-transform. CO1 K3 12

4 Explain the following properties of DFT a) Complex

conjugate property b) Circular Convolution
CO1 K2 16

5 Explain the following properties of DFT a) Linearity

b) Complex conjugate property
CO1 K2 23

6 Find the circular convolution of 𝑥1 (𝑛) = {1, −1, −2,3,

−1},𝑥2 (𝑛) = {1,2,3} Using i) Concentric circle

method ii) Matrix metho

CO1 K3 30

7 Find the output y(n) of a filter whose impulse

response is h(n)={1,1,1} and input x(n)={3,-

1,0,1,3,2,0,1,2,1} using i) Overlap-save method ii)

Overlap-add method

CO1 K3 31

8 Find the output y(n) of a filter whose impulse

response is h(n)={1,1,1} and input x(n)={3,-

1,0,1,3,2,0,1,2,1} using i) Overlap-save method ii)

Overlap-add method K3/CO1 O

CO1 K3 33

9 The first eight points of 14-point DFT of a real valued

sequence are {12, - 1+j3, 3+j4, 1-j5, -2+j2, 6+j3, -2-

j3, 10,…..} i) Determine the remaining points ii)

Evaluate x[0] without computing the IDFT of X(k)?

iii) Evaluate IDFT to obtain the real sequence ?

CO1 K3 35

10 Find the remaining samples of the 14-point DFT of

the sequence given below X(K)={12,-1+j3,3+j4,1-j5,-

2+j2,6+j3,-2-j3,10,…..}

CO1 K3 37

11 Consider the sequence x(n)={1,2,-3,0,1,-1,4,2}.

Evaluate the following functions without computing

the DFT. i) X(0) ii) X(4) iii) ∑ 𝑋(𝐾) 7 𝑘=0 iv) ∑ 𝑒

−𝑗3𝜋𝑘 4 7 𝑘=0 X(K)

CO1 K3 40

ECE DEPARTMENT, NCERC PAMPADY Page 10

MODULE II

1 Find the IDFT of the sequence X(k)={10,-2+j2,-2,-2-

j2} using DIT algorithm

CO2 K5 49

2 Compute 4-point DFT of a sequence x(n)={0,1,2,3}

using DIF algorithm
CO2 K5 51

3 Compute 4-point DFT of a sequence x(n)={0,1,2,3}

using DIT algorithm.

CO2 K5 52

4 Compute 4-point DFT of a sequence x(n)={1,0,0,1}

using DIF algorithm

CO2 K5 53

5 Compute 4-point DFT of a sequence x(n)={0,1,2,3}

using DIF algorithm.

CO2 K5 54

6 Compute 4-point DFT of a sequence x(n)={1,-1,1,-1}

using DIT algorithm.

CO2 K5 62

7 Find the 8 point DFT of a real sequence

x(n)={1,2,3,4,4,3,2,1} using radix-2 decimation in

time algorithm

CO2 K3 65

8 Compute the eight point DFT of the sequence 𝑥(𝑛) =

{ 1 0 ≤ 𝑛 ≤ 7 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} By using DIF algorithms.

CO2 K3 66

9 Compute the 8 point DFT of x(n) = {2,1,-1,3,5,2,4,1}

using radix-2 decimation in time FFT algorithm.

CO2 K3 68

10 Find the 8 point DFT of a real sequence

x(n)={1,2,2,2,1,0,0,0,0} using radix-2 decimation in

frequency algorithm.

CO2 K3 70

11 Compute the eight point DFT of the sequence 𝑥(𝑛) =

{ 1 0 ≤ 𝑛 ≤ 7 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} By using DIT algorithm

CO2 K3 72

MODULE III

1 Illustrate the design of IIR filters from Analog Filters. CO3 K3 99

2 Design an analog butterworth filter that has a -2dB

passband attenuation at a frequency of 20rad/sec and

atleast -10dB stopband attenuation at 30rad/sec.

CO3 K3 102

3 For the given specifications design an analog CO3 K3 103

ECE DEPARTMENT, NCERC PAMPADY Page 11

Butterworth filter. 0.9≤ |𝐻(𝑗Ω)| ≤ 1 for 0 ≤ Ω ≤ 0.2𝜋 .

|𝐻(𝑗Ω)| ≤ 0.2 for 0.4𝜋 ≤ Ω ≤ 𝜋 .
4 Design an analog butterworth filter that has a -2dB

passband attenuation at a frequency of 20rad/sec and

atleast -10dB stopband attenuation at 30rad/sec.

CO3 K3 105

5 Design an analog Butterworth filter that has a -2dB

passband attenuation at a frequency of 20rad/sec and

atleast -10dB stopband attenuation at 30rad/sec.

CO3 K3 107

6 Illustrate the design of IIR filters from Analog Filters. CO3 K3 110

7 Design a digital butterworth filter satisfying the

constraints 0.707 ≤ |H(e j⍵)| ≤ 1 for 0 ≤ ⍵ ≤ π 2 |H(e

j⍵)| ≤ 0.2 for 3𝜋 4 ≤ ⍵ ≤ π With T = 1 sec. Use

Bilinear transform.

CO3 K6 111

8 Convert the analog filter H(s) given below into a 2 nd

order butterworth digital filter using impulse

invariance technique. H(s) = 1 𝑠 2+√2 𝑠+1

CO3 K3 113

9 Apply bilinear transformation to H(s)= 2 (𝑠+1)(𝑠+2)

with T=1 sec and find H(Z)

CO3 K3 114

10 Design a digital butterworth filter satisfying the

constraints 0.707 ≤ |H(e j⍵)| ≤ 1 for 0 ≤ ⍵ ≤ π 2 |H(e

j⍵)| ≤ 0.2 for 3𝜋 4 ≤ ⍵ ≤ π With T = 1 sec. Use

Bilinear transform.

CO3 K6 116

MODULE IV

1 Define a signal flow graph. Draw the signal flow

graph of first order digital filter.
CO4 K2 126

2 Sketch a cascade realization of FIR filter structure

with complex zeros.
CO4 K3 135

3 Realize the transposed form structure for the system Y(n)

= -0.1y(n-1) +0.2y(n-2) +3x(n)+ 3.6x(n-1) +0.6x(n-2)
CO4 K3 138

4 Realize the system with difference equation y(n)= 3 4 y(n

− 1) − 1 8 y(n − 2) + x(n) + 1 3 x(n − 1) in cascade form.
CO4 K3 141

5 Draw the direct form I and direct form II structures

for the difference equation y(n) = x(n)+0.5x(n-1)

+3y(n-1)-2y(n-2)

CO4 K3 143

6 Draw the cascade form structure for a discrete time

sequence described H(Z)= 1+ 1 2 𝑧 −1 1− 3 4 𝑧−1+ 1

8 𝑧−2

CO4 K3 146

7 Realize the system function using minimum number

of multipliers H(Z) = (1+𝑧 −1)(1+0.5𝑧 −1 + 0.5𝑧 −2

+ 𝑧 −3)

CO4 K3 147

ECE DEPARTMENT, NCERC PAMPADY Page 12

8 Obtain the parallel form structure for the system given by

the difference equation y(n)= -0.1y(n-1) +0.72y(n-2)

+0.7x(n)- 0.252x(n-2)

CO4 K3 149

9 Let a signal 𝑥(𝑛) = 0.5 ௡𝑢(𝑛) is decimated by 2.

What happens to its spectrum?

CO4 K2 162

10 Derive Decimation In Time (DIT) FFT algorithm for

8 point DFT and draw the signal flow graph.

CO4 K5 170

11 Explain the effect in the spectrum of a signal x(n)

when it is (i) Decimated by a factor 3 (ii) Interpolated

by a factor 2 (5)

CO4 K3 171

MODULE V

1 Draw the block diagram of TMS320C67xx and briefly

explain function of all blocks.
CO5 K3 151

2 Draw the block diagram of ADC quantization noise

and explain in detail.
CO5 K3 153

3 Explain the effects of coefficient quantization in FIR

and IIR filters.
CO5 K2 154

4 Derive the variance of quantization noise in ADC.

Assume step size is .
CO5 K3 156

5 Let 𝑥(𝑛) = 0.5 ௡𝑢(𝑛). Obtain the signals for decimation by

3, interpolation by 3.
CO5 K2 157

6 Write notes on finite word length effects in DSP

systems.
CO5 K2 158

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Array Signal Processing 180

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 1

MODULE 1

1.1 INTRODUCTION

Signals constitute an important part of our daily life. Anything that carries some

information is called a signal. A signal is defined as a single-valued function of one or

more independent variables which contain some information. A signal is also defined as a

physical quantity that varies with time, space or any other independent variable. A signal

may be represented in time domain or frequency domain. Human speech is a familiar

example of a signal. Electric current and voltage are also examples of signals. A signal can

be a function of one or more independent variables. A signal may be a function of time,

temperature, position, pressure, distance etc. If a signal depends on only one independent

variable, it is called a one- dimensional signal, and if a signal depends on two independent

variables, it is called a two- dimensional signal.

A system is defined as an entity that acts on an input signal and transforms it into an

output signal. A system is also defined as a set of elements or fundamental blocks which

are connected together and produces an output in response to an input signal. It is a cause-

and- effect relation between two or more signals. The actual physical structure of the

system determines the exact relation between the input x (n) and the output y (n), and

specifies the output for every input. Systems may be single-input and single-output

systems or multi-input and multi-output systems.

Signal processing is a method of extracting information from the signal which in turn

depends on the type of signal and the nature of information it carries. Thus signal

processing is concerned with representing signals in the mathematical terms and extracting

information by carrying out algorithmic operations on the signal. Digital signal processing

has many advantages over analog signal processing. Some of these are as follows:

Digital circuits do not depend on precise values of digital signals for their operation.

Digital circuits are less sensitive to changes in component values. They are also less

sensitive to variations in temperature, ageing and other external parameters.

In a digital processor, the signals and system coefficients are represented as binary

words. This enables one to choose any accuracy by increasing or decreasing the number of

bits in the binary word.

Digital processing of a signal facilitates the sharing of a single processor among a

number of signals by time sharing. This reduces the processing cost per signal.

Digital implementation of a system allows easy adjustment of the processor

characteristics during processing.

Linear phase characteristics can be achieved only with digital filters. Also, multirate

processing is possible only in the digital domain. Digital circuits can be connected in

cascade without any loading problems, whereas this cannot be easily done with analog

circuits.

Storage of digital data is very easy. Signals can be stored on various storage media

such as magnetic tapes, disks and optical disks without any loss. On the other hand, stored

analog signals deteriorate rapidly as time progresses and cannot be recovered in their

original form.

Digital processing is more suited for processing very low frequency signals such as

seismic signals.

Though the advantages are many, there are some drawbacks associated with

processing a signal in digital domain. Digital processing needs ‘pre’ and ‘post’ processing

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 2

devices like analog-to- digital and digital-to-analog converters and associated

reconstruction filters. This increases the complexity of the digital system. Also, digital

techniques suffer from frequency limitations. Digital systems are constructed using active

devices which consume power whereas analog processing algorithms can be implemented

using passive devices which do not consume power. Moreover, active devices are less

reliable than passive components. But the advantages of digital processing techniques

outweigh the disadvantages in many applications. Also the cost of DSP hardware is

decreasing continuously. Consequently, the applications of digital signal processing are

increasing rapidly.

The digital signal processor may be a large programmable digital computer or a small

microprocessor programmed to perform the desired operations on the input signal. It

may also be a hardwired digital processor configured to perform a specified set of

operations on the input signal.

DSP has many applications. Some of them are: Speech processing, Communication,

Biomedical, Consumer electronics, Seismology and Image processing.
The block diagram of a DSP system is shown in Figure 1.1.

Figure 1.1 Block diagram of a digital signal processing system.

In this book we discuss only about discrete one-dimensional signals and consider only

single- input and single-output discrete-time systems. In this chapter, we discuss about

various basic discrete-time signals available, various operations on discrete-time signals

and classification of discrete-time signals and discrete-time systems.

1.2 REPRESENTATION OF DISCRETE-TIME SIGNALS

Discrete-time signals are signals which are defined only at discrete instants of time. For

those signals, the amplitude between the two time instants is just not defined. For discrete-

time signal the independent variable is time n, and it is represented by x (n).

There are following four ways of representing discrete-time signals:

1. Graphical representation

2. Functional representation

3. Tabular representation

4. Sequence representation

1.2.1 Graphical Representation
Consider a single x (n) with values

X (-2) = -3, x(-1) = 2, x(0) = 0, x(1) = 3, x(2) = 1 and x(3) = 2

This discrete-time single can be represented graphically as shown in Figure 1.2

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 3

Figure 1.2 Graphical representation of discrete-time signal

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 4

{ }

1.2.1 Functional Representation

In this, the amplitude of the signal is written against the values of n. The signal given in section

1.2.1 can be represented using the functional representation as follows:

Another example is:

X (n) = 2nu (n)

2𝑛 𝑓𝑜𝑟 𝑛 ≥ 0

Or x (n) = {0 𝑓𝑜𝑟 𝑛 < 0

1.2.3 Tabular Representation

In this, the sampling instant n and the magnitude of the signal at the sampling instant are

represented in the tabular form. The signal given in section 1.2.1 can be represented in

tabular form as follows:

n

2

1
0 1 2 3

x (n)
3

2 0 3 1 2

1.2.4 Sequence Representation

A finite duration sequence given in section 1.2.1 can be represented as

follows:

X(n) =
−3,2,0,3,1,2

𝗍

Another example

is:

X(n) =

…2,3,0,1,−2…

𝗍 }

The arrow mark 𝗍 denotes the n = 0 term. When no arrow is indicated, the first term

corresponds to n = 0.
So a finite duration sequence, that satisfies the condition x(n) = 0 for n < 0 can be represented as:

x(n) = {3, 5, 2, 1, 4, 7}

Sum and product of discrete-time sequences

The sum of two discrete-time sequences is obtained by adding the corresponding

{

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 5

elements of sequences

{Cn} = {an} + {bn} → Cn = an + bn

The product of two discrete-time sequences is obtained by multiplying the

corresponding elements of the sequences.

{Cn} = {an}{bn} → Cn = anbn

The multiplication of a sequence by a constant k is obtained by multiplying each

element of the sequence by that constant.

{Cn} = k{an} → Cn = kan

1.3 ELEMENTARY DISCRETE-TIME SIGNALS

There are several elementary signals which play vital role in the study of signals and

systems. These elementary signals serve as basic building blocks for the construction of

more complex signals. Infact, these elementary signals may be used to model a large

number of physical signals, which occur in nature. These elementary signals are also called

standard signals.

The standard discrete-time signals are as follows:

1. Unit step sequence

2. Unit ramp sequence

3. Unit parabolic sequence

4. Unit impulse sequence

5. Sinusoidal sequence

6. Real exponential sequence

7. Complex exponential sequence

1.3.1 Unit Step Sequence

The step sequence is an important signal used for analysis of many discrete-time systems.

It exists only for positive time and is zero for negative time. It is equivalent to applying a

signal whose amplitude suddenly changes and remains constant at the sampling instants

forever after application. In between the discrete instants it is zero. If a step function has

unity magnitude, then it is called unit step function.

The usefulness of the unit-step function lies in the fact that if we want a sequence to

start at n = 0, so that it may have a value of zero for n < 0, we only need to multiply the

given sequence with unit step function u (n).

The discrete-time unit step sequence u (n) is defined as:

1 𝑓𝑜𝑟 𝑛 ≥ 0
U (n) = {0 𝑓𝑜𝑟 𝑛 < 0

The shifted version of the discrete-time unit step sequence u(n – k) is defined as:

1 𝑓𝑜𝑟 𝑛 ≥ 𝑘

U (n - k) = {0 𝑓𝑜𝑟 𝑛 < 𝑘

It is zero if the argument (n – k) < 0 and equal to 1 if the argument (n – k) S 0.

The graphical representation of u (n) and u (n – k) is shown in Figure 1.3[(a) and (b)].

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 6

Figure 1.3 Discrete–time (a) Unit step function (b) Shifted unit step function

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 7

1.3.2 Unit Ramp Sequence

The discrete-time unit ramp sequence r (n) is that sequence which starts at n = 0 and

increases linearly with time and is defined as:

𝑛 𝑓𝑜𝑟 𝑛 ≥ 0
r(n) = {0 𝑓𝑜𝑟 𝑛 < 0

or r(n) = nu(n)

It starts at n = 0 and increases linearly with n.

The shifted version of the discrete-time unit ramp sequence r(n – k) is defined as:

R(n – k) =
𝑛 − 𝑘 𝑓𝑜𝑟 𝑛 ≥ 𝑘

{
0 𝑓𝑜𝑟 𝑛 < 𝑘

Or r(n – k) = (n – k) u(n – k)

The graphical representation of r(n) and r(n – 2) is shown in Figure 1.4[(a) and (b)].

Figure 1.4 Discrete–time (a) Unit ramp sequence (b) Shifted ramp sequence.

1.3.3 Unit Parabolic Sequence

The discrete-time unit parabolic sequence p (n) is defined as:
𝑛2

𝑓𝑜𝑟 𝑛 ≥ 0
{ 2
0 𝑓𝑜𝑟 𝑛 < 0

Or P(n) = 𝑁
2

u(n)
2

The shifted version of the discrete-time unit parabolic sequence p(n – k) is defined as:
(𝑛−𝑘)2

𝑓𝑜𝑟 𝑛 ≥ 𝑘
P(n – k) = { 2

0 𝑓𝑜𝑟 𝑛 < 𝑘

Or p(n – k) = (𝑛−𝑘)
2

u(n – k)
2

The graphical representation of p(n) and p(n – 3) is shown in Figure 1.5[(a) and (b)].

P (n) =

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 8

Figure 1.5 Discrete–time (a) ParaboFic sequence (b) Shifted paraboFic sequence.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 9

1.3.4 Unit Impulse Function or Unit Sample Sequence

The discrete-time unit impulse function (n), also called unit sample sequence, is defined as:

𝛿 (𝑛)
1 𝑓𝑜𝑟 𝑛 = 0

= {
0 𝑓𝑜𝑟 𝑛 ≠ 0

This means that the unit sample sequence is a signal that is zero everywhere, except at n = 0,

where its value is unity. It is the most widely used elementary signal used for the analysis of

signals and systems.

The shifted unit impulse function (n – k) is defined as:

𝛿 (𝑛 − 𝑘) = {
1 𝑓𝑜𝑟 𝑛 = 𝑘

0 𝑓𝑜𝑟 𝑛 ≠ 𝑘

The graphical representation of (n) and (n – k) is shown in Figure 1.6[(a) and (b)].

Figure 1.6 Discrete–time (a) Unit sample sequence (b) Delayed unit sample sequence.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 10

𝑘= −∞

𝑚=0

Properties of discrete-time unit sample sequence

1. 𝛿(n) = u(n) – u(n – 1) 2. 𝛿(n – k) = {
1 𝑓𝑜𝑟 𝑛 = 𝑘

0 𝑓𝑜𝑟 𝑛 ≠ 𝑘
3. X(n) = ∑∞ 𝑥(𝑘)𝛿 (𝑛 − 𝑘)

∞
𝑛=
−∞

𝑥(𝑛)𝛿 (𝑛 −

𝑛0

) = x(n0)

Relation Between The Unit Sample Sequence And The Unit Step Sequence

The unit sample sequence 𝛿(n) and the unit step sequence u(n) are related as:

U(n) = ∑𝑛 𝛿 (𝑚), 𝛿(n) = u(n) – u(n - 1)

Sinusoidal Sequence

The discrete-time sinusoidal sequence is given by

X(n) = A sin (𝜔𝑛 + ∅)

Where A is the amplitude, is angular frequency, is phase angle in radians and n is an

integer.

The period of the discrete-time sinusoidal sequence is:

N = 2𝜋 𝑚
𝜔

Where N and m are integers.

All continuous-time sinusoidal signals are periodic, but discrete-time sinusoidal

sequences may or may not be periodic depending on the value of.
For a discrete-time signal to be periodic, the angular frequency must be a rational multiple of 2.

The graphical representation of a discrete-time sinusoidal signal is shown in Figure 1.7.

Figure 1.7 Discrete-time sinusoidal signal

1.3.6 Real Exponential Sequence

The discrete-time real exponential sequence an is defined as:

X(n) = an for all n

Figure 1.8 illustrates different types of discrete-time exponential signals.

When a > 1, the sequence grows exponentially as shown in Figure 1.8(a).

When 0 < a < 1, the sequence decays exponentially as shown in Figure 1.8(b). When a <

0, the sequence takes alternating signs as shown in Figure 1.8[(c) and (d)].

4. ∑

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 11

Figure 1.8 Discrete-time

exponential signal an for (a) a > 1

(b) 0 < a < 1 (c) a < -1 (d) -1 < a <

0.

1.3.7 Complex Exponential Sequence

The discrete-time complex exponential

sequence is defined as:

X(n) = anej(𝜔0 n+∅)

= an cos(𝜔0𝑛 + ∅) + jan sin(𝜔0𝑛 = ∅)

For |a| = 1, the real and imaginary parts of

complex exponential sequence are

sinusoidal.

For |a| > 1, the amplitude of the

sinusoidal sequence

exponentially grows as shown

in Figure 1.9(a).

For |a| < 1, the amplitude of

the sinusoidal sequence

exponentially decays as

shown in Figure 1.9(b).

1.4 BASIC OPERATIONS ON SEQUENCES

When we process a sequence, this sequence may undergo several manipulations

involving the independent variable or the amplitude of the signal.

The basic operations on sequences are as follows:

1. Time shifting

2. Time reversal

3. Time scaling

4. Amplitude scaling

5. Signal addition

6. Signal multiplication

The first three operations correspond to transformation in independent variable n of a signal.

The last three operations correspond to transformation on amplitude of a signal.

1.4.1 Time Shifting

The time shifting of a signal may result in time delay or time advance. The time shifting

operation of a discrete-time signal x(n) can be represented by

y(n) = x(n – k)

This shows that the signal y (n) can be obtained by time shifting the signal x(n) by k units.

If k is positive, it is delay and the shift is to the right, and if k is negative, it is advance and

the shift is to the left.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 12

An arbitrary signal x(n) is shown in Figure 1.10(a). x(n – 3) which is obtained by

shifting x(n) to the right by 3 units (i.e. delay x(n) by 3 units) is shown in Figure 1.10(b).

x(n + 2) which is obtained by shifting x(n) to the left by 2 units (i.e. advancing x(n) by 2

units) is shown in

Figure 1.10(c).

1.4.2 Time Reversal

Figure 1.10 (a) Sequence x(n) (b) x(n – 3) (c) x(n + 2).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 13

The time reversal also called time folding of a discrete-time signal x(n) can be obtained by

foldingthe sequence about n = 0. The time reversed signal is the reflection of the

original signal. It is obtained by replacing the independent variable n by –n. Figure 1.11(a)

shows an arbitrary discrete-time signal x(n), and its time reversed version x(–n) is shown

in Figure 1.11(b).

Figure 1.11[(c) and (d)] shows the delayed and advanced versions of reversed signal x(–n).

The signal x(–n + 3) is obtained by delaying (shifting to the right) the time

reversed signal x(–n) by 3 units of time. The signal x(–n – 3) is obtained by

advancing (shifting to the left) the time reversed signal x(–n) by 3 units of time.

Figure 1.12 shows other examples for time reversal of signals

EXAMPLE 1.2 Sketch the following signals:

(a) U(n+2) u(-n+3) (b) x(n) = u(n+4) – u(n-2)

Solutions:

(a) Given x(n)=u(n+2) u(-n+3)

The signal u (n + 2) u(–n + 3) can be obtained by first drawing the signal u(n + 2) as

shown in Figure 1.13(a), then drawing u (–n + 3) as shown in Figure 1.13(b),

Figure 1.11 (a) Original signal x(n) (b) Time reversed signal x(-n) (c) Time

reversed and delayed

signal x(-n+3) (d) Time reversed and advanced signal x(-n-3).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 14

Figure 1.12 Time reversal operations.

and then multiplying these sequences element by element to obtain u(n + 2) u(–n

+ 3) as shown in Figure 1.13(c).

x(n) = 0 for n < –2 and n > 3; x(n) = 1 for –2 < n < 3

(a) Given x(n) = u(n + 4) – u(n – 2)

The signal u(n + 4) – u(n – 2) can be obtained by first plotting u(n + 4) as shown

in Figure 1.14(a), then plotting u(n – 2) as shown in Figure 1.14(b), and then

subtracting each element of u(n – 2) from the corresponding element of u(n + 4)

to obtain the result shown in Figure 1.14(c).

Figure 1.13 Plots of (a) u(n + 2) (b) u(–n + 3) (c) u(n + 2) u(–n + 3).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 15

Figure 1.14 Plots of (a) u(n + 4) (b) u(n – 2) (c) u(n + 4) – u(n – 2).

1.4.3 Amplitude Scaling

The amplitude scaling of a discrete-time signal can be

represented by

y(n) = ax(n)

where a is a constant.

The amplitude of y(n) at any instant is equal to a times the amplitude of x(n) at that

instant. If a > 1, it is amplification and if a < 1, it is attenuation. Hence the amplitude is

rescaled. Hence the name amplitude scaling.

Figure 1.15(a) shows a signal x(n) and Figure 1.15(b) shows a scaled signal y(n) = 2x(n).

1.4.1 Time Scaling

Time scaling may be time expansion or time compression. The time scaling of a discrete-

time signal x(n) can be accomplished by replacing n by an in it. Mathematically, it can be

expressed as:

y(n) = x(an)

When a > 1, it is time compression and when a < 1, it is time expansion.

Let x(n) be a sequence as shown in Figure 1.16(a). If a = 2, y(n) = x(2n). Then

y(0) = x(0) = 1

y(–1) = x(–2) = 3

y(–2) = x(–4) = 0

y(1) = x(2) = 3

y(2) = x(4) = 0

and so on.

So to plot x(2n) we have to skip odd numbered samples in x(n).

We can plot the time scaled signal y(n) = x(2n) as shown in Figure 1.16(b). Here the signal

is

compressed by 2.

If a = (1/2), y(n) = x(n/2), then

y(0) = x(0) = 1

y(2) = x(1) = 2

y(4) = x(2) = 3

y(6) = x(3) = 4

y(8) = x(4) = 0

y(–2) = x(–1) = 2

y(–4) = x(–2) = 3

y(–6) = x(–3) = 4

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 16

y(–8) = x(– 4) = 0

We can plot y(n) = x(n/2) as shown in Figure 1.16(c). Here the signal is expanded by 2. All Odd

components in x(n/2) are zero because x(n) does not have any value in between the sampling instants.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 17

Figure 1.16 Discrete–time sca l i ng (a) Pl ot of x(n) (b) Pl ot o f x(2 n) (c) Pl ot of x(n /

2)

Time scaling is very useful when data is to be fed at some rate and is to be taken out at a

different rate.

1.45 Signal Addition

In discrete-time domain, the sum of two signals x1(n) and x2(n) can be obtained

by adding the corresponding sample values and the subtraction of x2(n) from x1(n) can

be obtained by subtracting each sample of x2(n) from the corresponding sample of

x1(n) as illustrated below.

If x1(n) = {1, 2, 3, 1, 5} and x2(n) = {2, 3, 4, 1, –2}

Then x1(n) + x2(n) = {1 + 2, 2 + 3, 3 + 4, 1 + 1, 5 – 2} = {3, 5, 7, 2, 3}

and x1(n) – x2(n) = {1 – 2, 2 – 3, 3 – 4, 1 – 1, 5 + 2} = {–1, –1, –1, 0, 7}

1.4.6 Signal multiplication

The multiplication of two discrete-time sequences can be performed by multiplying their

values at the sampling instants as shown below.

If x1(n) = {1, –3, 2, 4, 1.5} and x2(n) = {2, –1, 3, 1.5, 2}

Then x1 (n) x2 (n) = {1 × 2,- 3 ×-1, 2 × 3, 4 × 1.5, 1.5 × 2}

= {2, 3, 6, 6, 3}

EXAMPLE 1.3 Express the signals shown in Figure 1.17 as the sum of singular functions.

Solution:

Figure 1.17 Waveforms for Example 1. 3

(a) The given signal shown in Figure 1.17(a) is:

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 18

x(n) = δ (n + 2) + δ (n + 1) + δ(n) + δ(n -

1)

0 𝑓𝑜𝑟 𝑛 ≤ −3

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 19

x(n) = {1 𝑓𝑜𝑟 − 2 ≤ 𝑛 ≤ 1

0 𝑓𝑜𝑟 𝑛 ≥ 2

∴ x(n) = u(n+2) – u(n-2)

 The signal shown in Figure 1.17(b) is:

x(n) = 𝛿(n – 2) + 𝛿 (n – 3) + δ (n – 4) + δ (n – 5)

0 𝑓𝑜𝑟 𝑛 ≤ 1

x(n) = {1 𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 5

0 𝑓𝑜𝑟 𝑛 ≥ 6

∴ x(n) = u(n – 2) – u(n – 6)

1.4 CLASSIFICATION OF DISCRETE-TIME SIGNALS

The signals can be classified based on their nature and characteristics in the time domain.

They are broadly classified as: (i) continuous-time signals and (ii) discrete-time signals.

The signals that are defined for every instant of time are known as continuous-time

signals. The continuous-time signals are also called analog signals. They are denoted by x

(t). They are continuous in amplitude as well as in time. Most of the signals available are

continuous-time signals.

The signals that are defined only at discrete instants of time are known as discrete-

time signals. The discrete-time signals are continuous in amplitude, but discrete in time. For

discrete- time signals, the amplitude between two time instants is just not defined. For

discrete-time signals, the independent variable is time n. Since they are defined only at

discrete instants of time, they are denoted by a sequence x (nT) or simply by x(n) where

n is an integer.

Figure 1.18 shows the graphical representation of discrete-time signals. The discrete-

time signals may be inherently discrete or may be discrete versions of the continuous-time

signals.

Figure 1.18 Discrete-time signals

Both continuous-time and discrete-time signals are further classified as follows:

1. Deterministic and random signals

2. Periodic and non-periodic signals

3. Energy and power signals

4. Causal and non-causal signals

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 20

5. Even and odd signals

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 21

1.5.1 Deterministic and Random Signals

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of time is

called deterministic signal. A deterministic signal can be completely represented by mathematical

equation at any time and its nature and amplitude at any time can be predicted.

Examples: Sinusoidal sequence x(n) = cos n, Exponential sequence x(n) = ej n, ramp sequence

x(n) = n.

A signal characterized by uncertainty about its occurrence is called a non-

deterministic or random signal. A random signal cannot be represented by any

mathematical equation. The behavior of such a signal is probabilistic in nature and can be

analyzed only stochastically. The pattern of such a signal is quite irregular. Its amplitude

and phase at any time instant cannot be predicted in advance. A typical example of a non-

deterministic signal is thermal noise.

1.5.2 Periodic and Non-periodic Sequences

A signal which has a definite pattern and repeats itself at regular intervals of time is called

a periodic signal, and a signal which does not repeat at regular intervals of time is called a

non-periodic or aperiodic signal.

A discrete-time signal x(n) is said to be periodic if it satisfies the condition x(n) = x(n +

N) for all integers n.

The smallest value of N which satisfies the above condition is known as fundamental period.

If the above condition is not satisfied even for one value of n, then the discrete-

time signal is aperiodic. Sometimes aperiodic signals are said to have a period equal

to infinity.

The angular frequency is given by

Fundamental period N = 2𝜋
𝜔

𝜔 =
2𝜋

𝑁

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 22

The sum of two discrete-time periodic sequence is always periodic.

some examples of discrete-time periodic/non-periodic signals are shown in Figure 1.19.

Figure 1.19 Example of discrete-time: (a) Periodic and (b) Non-periodic signals

EXAMPLE 1.4 Show that the complex exponential sequence x(n) = ej 0n is periodic only if

0/2 is a rational number.

Solution: Given x(n) = 𝑒𝑗𝜔0𝑛

X (n) will be periodic if x(n + N) = x(n)

i.e. 𝑒𝑗[𝜔0(𝑛=𝑁0]
= 𝑒

𝑗𝜔0𝑛

i.e. 𝑒𝑗𝜔0𝑁 𝑒𝑗𝜔0𝑛
= 𝑒

𝑗𝜔0𝑛

This is possible only if e j 0 N = 1

This is true only if 𝜔0N = 2𝜋k

Where k is an integer
𝜔0 = 𝑘
2𝜋 𝑁

1.5.3 Energy Signals And Power Signals

Signals may also be classified as energy signals and power signals. However there

are some signals which can neither be classified as energy signals nor power signals.
The total energy E of a discrete-time signal x(n) is defined as:

and the average power P of a discrete-time signal x(n) is defined as:

A signal is said to be an energy signal if and only if its total energy E over the interval (–

∞, ∞) is finite (i.e., 0 < E < ∞). For an energy signal, average power P = 0. Non-periodic

signals which are defined over a finite time (also called time limited signals) are the

examples of energy signals. Since the energy of a periodic signal is always either zero or

infinite, any periodic signal cannot be an energy signal.

A signal is said to be a power signal, if its average power P is finite (i.e., 0 < P < ∞).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 23

For a power signal, total energy E = ∞. Periodic signals are the examples of power signals.

Every bounded and periodic signal is a power signal. But it is true that a power signal is

not necessarily a bounded and periodic signal.

Both energy and power signals are mutually exclusive, i.e. no signal can be both

energy signal and power signal.

The signals that do not satisfy the above properties are neither energy signals nor

power signals. For example, x(n) = u(n), x(n) = nu(n), x(n) = n2u(n).

These are signals for which neither P nor E are finite. If the signals contain infinite

energy and zero power or infinite energy and infinite power, they are neither energy nor

power signals.

If the signal amplitude becomes zero as |n| → ∞, it is an energy signal, and if the
signal amplitude does not become zero as |n| → ∞, it is a power signal.

Causal and Non-causal Signals

A discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise the signal is

non- causal. A discrete-time signal x(n) is said to be anti-causal if x(n) = 0 for n > 0.

A causal signal does not exist for negative time and an anti-causal signal does not

exist for positive time. A signal which exists in positive as well as negative time is called a

non-casual signal.

u(n) is a causal signal and u(– n) an anti-causal signal, whereas x(n) = 1 for – 2 ≤ n ≤
3 is a non-causal signal.

Even and Odd Signals

Any signal x(n) can be expressed as sum of even and odd components. That is

x(n) = xe(n) + xo(n)

where xe(n) is even components and xo(n) is odd components of the signal.

Even (syMMetric) signal

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the condition:

x(n) = x(–n) for all n

Even signals are symmetrical about the vertical axis or time origin. Hence they are

also called symmetric signals: cosine sequence is an example of an even signal. Some

even signals are shown in Figure 1.20(a). An even signal is identical to its reflection about

the origin. For an even signal x0(n) = 0.

Odd (anti-syMMetric) signal

A discrete-time signal x(n) is said to be an odd (anti-symmetric) signal if it satisfies the condition:

x(–n) = –x(n) for all n

Odd signals are anti-symmetrical about the vertical axis. Hence they are called anti-

symmetric signals. Sinusoidal sequence is an example of an odd signal. For an odd signal

xe(n) = 0. Some odd signals are shown in Figure 1.20(b).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 24

Figure 1.20 (a) Even sequences (b) Odd sequences.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 25

Thus, the product of two even signals or of two odd signals is an even signal, and

the product of even and odd signals is an odd signal.

Every signal need not be either purely even signal or purely odd signal, but

every signal can be decomposed into sum of even and odd parts.

CLASSIFICATION OF DISCRETE-TIME S Y S T E M S

A system is defined as an entity that acts on an input signal and transforms it into an

output signal. A system may also be defined as a set of elements or functional blocks

which are connected together and produces an output in response to an input signal.

The response or output of the system depends on the transfer function of the system. It

is a cause and effect relation between two or more signals.

As signals, systems are also broadly classified into continuous-time and discrete-

time systems. A continuous-time system is one which transforms continuous-time

input signals into continuous-time output signals, whereas a discrete-time system is

one which transforms discrete-time input signals into discrete-time output signals.

For example microprocessors, semiconductor memories, shift registers, etc. are

discrete- time systems.

A discrete-time system is represented by a block diagram as shown in Figure 1.22.

An arrow entering the box is the input signal (also called excitation, source or driving

function) and an arrow leaving the box is an output signal (also called response).

Generally, the input is denoted by x(n) and the output is denoted by y(n).

The relation between the input x(n) and the output y(n) of a system has the form:

y(n) = Operation on x(n)

Mathematically,

y(n) = T[x(n)]

which represents that x(n) is transformed to y(n). In other words, y(n) is the

transformed version of x(n).

Figure 1.22 BFock diagram of discrete–time system.

Both continuous-time and discrete-time systems are further classified as follows:

1. Static (memoryless) and dynamic (memory) systems

2. Causal and non-causal systems

3. Linear and non-linear systems

4. Time-invariant and time varying systems

5. Stable and unstable systems.

6. Invertible and non-invertible systems

7. FIR and IIR systems

Static and Dynamic Systems

A system is said to be static or memoryless if the response is due to present input

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 26

alone, i.e., for a static or memoryless system, the output at any instant n depends only

on the input applied at that instant n but not on the past or future values of input or

past values of output.

For example, the systems defined below are static or memoryless systems.

y(n) = x(n)

y(n) = 2x2(n)

In contrast, a system is said to be dynamic or memory system if the response depends

upon past or future inputs or past outputs. A summer or accumulator, a delay element is

a discrete- time system with memory.

For example, the systems defined below are dynamic or memory systems.

y(n) = x(2n)

y(n) = x(n) + x(n – 2)

y(n) + 4y(n – 1) + 4y(n – 2) = x(n)

Any discrete-time system described by a difference equation is a dynamic system.

A purely resistive electrical circuit is a static system, whereas an electric circuit

having inductors and/or capacitors is a dynamic system.

A discrete-time LTI system is memoryless (static) if its impulse response h(n)

is zero for n s 0. If the impulse response is not identically zero for n s 0, then the system

is called dynamic system or system with memory.

EXAMPLE 1.12 Find whether the following systems are dynamic or

not: (a) y(n) = x(n + 2) (b) y(n) = x2(n)

(c) y(n) = x(n – 2) + x(n)

Solution:

(a) Given y(n) = x(n + 2)

The output depends on the future value of input. Therefore, the system is dynamic.

(b) Given y(n) = x2(n)

The output depends on the present value of input alone. Therefore, the

system is static.

(c) Given y(n) = x(n – 2) + x(n)

The system is described by a difference equation. Therefore, the system is dynamic.

Causal and Non-causal Systems

A system is said to be causal (or non-anticipative) if the output of the system at

any instant n depends only on the present and past values of the input but not on

future inputs, i.e., for a causal system, the impulse response or output does not begin

before the input function is applied, i.e., a causal system is non anticipatory.
Causal systems are real time systems. They are physically realizable.

The impulse response of a causal system is zero for n < 0, since (n) exists only at n = 0,

i.e. h(n) = 0 for n < 0

The examples for causal systems are:

y(n) = nx(n)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 27

y(n) = x(n – 2) + x(n – 1) + x(n)

A system is said to be non-causal (anticipative) if the output of the system at any instant

n depends on future inputs. They are anticipatory systems. They produce an output

even before the input is given. They do not exist in real time. They are not

physically realizable.

A delay element is a causal system, whereas an image processing system is a non-

causal system.
The examples for non-causal systems are:

y(n) = x(n) + x(2n)

y(n) = x2(n) + 2x(n + 2)

Superposition property means a system which produces an output y1(n) for an

input x1(n) and an output y2(n) for an input x2(n) must produce an output y1(n) + y2(n)

for an input x1(n) + x2(n).

Combining them we can say that a system is linear if an arbitrary input x1(n)

produces an output y1(n) and an arbitrary input x2(n) produces an output y2(n), then
the weighted sum of inputs ax1(n) + bx2(n) where a and b are constants produces an

output ay1(n) + by2(n) which is the sum of weighted outputs.

EXAMPLE 1.13 Check whether the following systems are causal or

not: (a) y(n) x(n) x(n 2) (b) y(n) = x(2n)
(c) y(n) = sin[x(n)] (d) y(n) = x(–n)

Solution:

(a) Given

For n = –2

For n = 0

For n = 2

y(n) x(n) x(n 2)

y(2) x(2) x(4)

y(0) x(0) x(2)

y(2) x(2) x(0)

For all values of n, the output depends only on the present and past

inputs. Therefore, the system is causal.

(a) Given y(n) x(2n
)

For n = –2

y(2) x(

4)
For n = 0

y(0) x(0)

For n = 2
y(2)

x(4)

For positive values of n, the output depends on the future values of input.

Therefore, the system is non-causal.

(a) Given

For n = –2

For n = 0

For n = 2

y(n) sin [x(n)]

y(2) sin [x(2)]

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 28

y(0) sin [x(0)]

y(2) sin [x(2)]

For all values of n, the output depends only on the present value of input.

Therefore, the system is causal.

(d) Given y(n) = x(–n)

 For n = –2
y(2) x(2)

 For n = 0 y(0) x(0)

 For n = 2 y(2) x(2)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 29

For negative values of n, the output depends on the future values of input.

Therefore, the system is non-causal.

Linear and Non-linear Systems

A system which obeys the principle of superposition and principle of homogeneity

is called a linear system and a system which does not obey the principle of

superposition and homogeneity is called a non-linear system.

Homogeneity property means a system which produces an output y(n) for an input

x(n) must produce an output ay(n) for an input ax(n).

T(ax1(n) + bx2(n)] = aT[x1(n)] + bT[x2(n)]

Simply we can say that a system is linear if the output due to weighted sum of

inputs is equal to the weighted sum of outputs.

In general, if the describing equation contains square or higher order terms of

input and/or output and/or product of input/output and its difference or a constant, the

system will definitely be non-linear.

Shift-invariant and Shift-varying Systems

Time-invariance is the property of a system which makes the behaviour of the system

independent of time. This means that the behaviour of the system does not depend

on the time at which the input is applied. For discrete-time systems, the time invariance

property is called shift invariance.

A system is said to be shift-invariant if its input/output characteristics do not

change with time, i.e., if a time shift in the input results in a corresponding time

shift in the output as shown in Figure 1.23, i.e.

If T[x(n)] = y(n)

Then T[x(n – k)] = y(n – k)

A system not satisfying the above requirements is called a time-varying system (or

shift- varying system). A time-invariant system is also called a fixed system.

The time-invariance property of the given discrete-time system can be tested

as follows:

Let x(n) be the input and let x(n – k) be the input delayed by k units.

y(n) = T[x(n)] be the output for the input x(n).

Stable and Unstable Systems

A bounded signal is a signal whose magnitude is always a finite value, i.e. x (n) ≤ M

, where M is a positive real finite number. For example a sinewave is a bounded

signal. A system is said to be bounded-input, bounded-output (BIBO) stable, if and

only if every bounded input produces a bounded output. The output of such a system

does not diverge or does not grow unreasonably large.
Let the input signal x(n) be bounded (finite), i.e.,

x (n) ≤ Mx for all n

where Mx is a positive real number. If

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 30

y (n) ≤ My ≤∞

i.e. if the output y(n) is also bounded, then the system is BIBO stable. Otherwise, the

system is unstable. That is, we say that a system is unstable even if one bounded input

produces an unbounded output.

It is very important to know about the stability of the system. Stability indicates

the usefulness of the system. The stability can be found from the impulse response of

the system which is nothing but the output of the system for a unit impulse input. If

the impulse response is absolutely summable for a discrete-time system, then the

system is stable.

BlBO stability criterion

The necessary and sufficient condition for a discrete-time system to be BIBO stable

is given by the expression:

where h(n) is the impulse response of the system. This is called BIBO stability criterion.

Proof: Consider a linear time-invariant system with x(n) as input and y(n) as

output. The input and output of the system are related by the convolution

integral.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 31

SOLUTION OF DIFFERENCE EQUATIONS USING Z-TRANSFORMS.

To solve the difference equation, first it is converted into algebraic equation by taking its Z-

transform. The solution is obtained in z-domain and the time domain solution is obtained by

taking its inverse Z-transform. The system response has two components. The source free

response and the forced response. The response of the system due to input alone when the

initial conditions are neglected is called the forced response of the system. It is also called

the steady state response of the system. It represents the component of the response due to

the driving force. The response of the system due to initial conditions alone when the input

is neglected is called the free or natural response of the system. It is also called the transient

response of the system. It represents the component of the response when the driving

function is made zero. The response due to input and initial conditions considered

simultaneously is called the total response of the system. For a stable system, the source

free component always decays with time. In fact a stable system is one whose source free

component decays with time. For this reason the source free component is also designated

as the transient component and the component due to source is called the steady state

component. When input is a unit impulse input, the response is called the impulse response

of the system and when the input is a unit step input, the response is called the step

response of the system.

EXAMPLE 1 A linear shift invariant system is described by the difference equation

𝑦(𝑛) - 3 (

) 1 (

) ()

with y(–1) = 0 and y(–2) = –

1.

𝑦 𝑛 − 1
4

+ 𝑦 𝑛 − 2
8

= 𝑥 𝑛 + 𝑥(𝑛 − 1)

Find (a) the natural response of the system (b) the forced response of the system

for a step input and (c) the frequency response of the system.

Solution:

(a) The natural response is the response due to initial conditions only. So make x(n) =

0. Then the difference equation becomes
𝑦(𝑛) - 3 ()

1
() 𝑦 𝑛 − 1

4

Taking Z-transform on both sides, we

have

Taking inverse Z-transform on both

sides, we get the natural response as:

 + 𝑦 𝑛 − 2 = 0
8

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 32

Taking partial fractions of Y(z)/z, we have

Taking the inverse Z-transform on both sides, we have the forced response

for a step input.

© The frequency response of the system H() is obtained by putting z = ejw in H(z).

EXAMPLE 2 (a) Determine the free response of the system described by the difference equation

(a) Determine the forced response for an input

Solution:

(a) The free response, also called the natural response or transient response is

the response due to initial conditions only [i.e. make x(n) = 0]. So, the

difference equation is:

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 33

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 34

Taking Z-transform on both sides, we get

Taking inverse Z-transform on both sides, we get the free response of the system as:

(a) To determine the forced response, i.e. the steady state response, the initial

conditions are to be neglected.

The given difference equation is:

Taking Z-transform on both sides and neglecting the initial conditions, we have

Partial fraction expansion of Y(z)/z gives

Multiplying both sides by z, we get

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 35

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 36

Taking inverse Z-transform on both sides, the forced response of the system is:

EXAMPLE 3 Find the impulse and step response of the system

Solution: For impulse response, x(n) =δ

(n) The impulse response of the

system is:

For step response, x(n) = u(n)

The step response of the system

is:

y(n)= 2u(n)- 3u(n 1) +u(n 2) -4u(n 3)

EXAMPLE 4 Solve the following difference equation

y(n) + 2y(n- 1) = x(n)

with x(n) = (1/3)n u(n) and the initial condition y(–1)

= 1.

Solution: The solution of the difference equation considering the initial condition

and input simultaneously gives the total response of the system.

The given difference equation is:

Taking Z-transform on both sides, we get

Substituting the initial conditions, we have

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 37

Taking partial fractions of Y1(z)/z, we have

Multiplying both sides by z, we have

Taking inverse Z-transform on both sides, the solution of the difference equation is:

EXAMPLE 5 Solve the following difference equation using unilateral Z-transform. with

initial conditions

Solution: The solution of the difference equation gives the total response of the

system (i.e., the sum of the natural (free) response and the forced response)
The given difference equation is:

with initial conditions y(–1) = 2 and y(–2) = 4. Taking Z-transform on both sides, we have

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 38

Taking partial fractions of Y(z)/z, we have

EXAMPLE 6 Using Z-transform determine the response of the LTI system described by

y(n) 2r cos y(n 1) + r2 y(n 2) = x(n) to an excitation x(n) = anu(n).

Solution: Taking Z-transform on both sides of the difference equation, we have

EXAMPLE 7 Determine the step response of an LTI system whose impulse response

h(n) is given by h(n) = a nu(n); 0 < a < 1 .

Solution: The impulse response is

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 39

We have to find the step response

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 40

The step response of the system is given by

So the step response is

EXAMPLE 8 The step response of an LTI system is

The system function H(z) is

The impulse response of the system is

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 41

MODULE II

Discrete Fourier Transforms

INTRODUCTION :The DFT of a discrete-time signal x(n) is a finite duration discrete

frequency sequence. The DFT sequence is denoted by X(k). The DFT is obtained by sampling

one period of the Fourier transform X(W) of the signal x(n) at a finite number of frequency

points. This sampling is conventionally performed at N equally spaced points in the period 0

≤w≤2w or at wk = 2πk/N;

0 ≤ k≤ N – 1. We can say that DFT is used for transforming discrete-time sequence x(n) of

finite length into discrete frequency sequence X(k) of finite length. The DFT is important

for two reasons. First it allows us to determine the frequency content of a signal, that is

to perform spectral analysis. The second application of the DFT is to perform filtering

operation in the frequency domain. Let x(n) be a discrete-time sequence with Fourier

transform X(W), then the DFT of x(n) denoted by X(k) is defined as

The DFT of x(n) is a sequence consisting of N samples of X(k). The DFT sequence starts at k

= 0, corresponding to w = 0, but does not include k = N corresponding to w = 2π (since the

sample at w = 0 is same as the sample at w = 2 π). Generally, the DFT is defined as

EXAMPLE 2.1 (a) Find the 4-point DFT of x(n) = {1, –1, 2, –2} directly.
(b) Find the IDFT of X(k) = {4, 2, 0, 4} directly.

Solution:

(a) Given sequence is x(n) = {1, –1, 2, –2}. Here the DFT X(k) to be found is N

=4-point and length of the sequence L = 4. So no padding of zeros is required. We

know that the DFT
{x(n)} is given by

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 42

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 43

EXAMPLE 2.2 (a) Find the 4-point DFT of x(n) = {1, –2, 3, 2}.
(b) Find the IDFT of X(k) = {1, 0, 1, 0}.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 44

EXAMPLE 2.3 Compute the DFT of the 3-point sequence x(n) = {2, 1, 2}. Using the same

sequence, compute the 6-point DFT and compare the two DFTs.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 45

To compute the 6-point DFT, convert the 3-point sequence x(n) into 6-point

sequence by padding with zeros.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 46

MATRIX FORMULATION OF THE DFT AND IDFT

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 47

THE IDFT FROM THE MATRIX FORM

The matrix x may be expressed in terms of the inverse of WN as:

WN is called the IDFT matrix. We may also obtain x directly from the IDFT relation in

matrix form, where the change of index from n to k and the change in the sign of the

exponent in e j(2/N)nk lead to the conjugate transpose of WN. We then have

EXAMPLE 2.4 Find the DFT of the sequence x(n) = {1, 2, 1, 0}

Solution: The DFT X(k) of the given sequence x(n) = {1, 2, 1, 0} may be obtained by

solving the matrix product as follows. Here N = 4.

EXAMPLE 2.5 Find the DFT of x(n) = {1, –1, 2, –2}.
Solution: The DFT, X(k) of the given sequence x(n) = {1, –1, 2, –2} can be determined using

matrix as shown below.

EXAMPLE 2.6. Find the 4-point DFT of x(n) = {1, –2, 3, 2}.

Solution: Given x(n) = {1, –2, 3, 2}, the 4-point DFT{x(n)} = X(k) is determined using

matrix as shown below.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 48

EXAMPLE 2.6 Find the IDFT of X(k)={4, –j2, 0, j2} using

DFT. Solution: Given X(k) = {4, –j2, 0, j2} _ X*(k) = {4, j2,

0, –j2} The IDFT of X(k) is determined using matrix as

shown below.

To find IDFT of X(k) first find X*(k), then find DFT of X*(k), then take conjugate of DFT

{X*(k)} and divide by N.

EXAMPLE 2.7Find the IDFT of X(k) = {4, 2, 0, 4} using DFT.
Solution: Given X(k) = {4, 2, 0, 4}
X*(k) = {4, 2, 0, 4}
The IDFT of X(k) is determined using matrix as shown below.
To find IDFT of X(k), first find X*(k), then find DFT of X*(k), then take conjugate of DFT

{X*(k)} and divide by N

EXAMPLE2.8 Find the IDFT of X(k) = {1, 0, 1, 0}.

Solution: Given X(k) = {1, 0, 1, 0}, the IDFT of X(k), i.e. x(n) is determined using

matrix as shown below.

PROPERTIES OF DFT

Like the Fourier and Z-transforms, the DFT has several important properties that are used

to process the finite duration sequences. Some of those properties are discussed as follows

Periodicity:

If a sequence x(n) is periodic with periodicity of N samples, then N-point DFT of the

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 49

sequence, X(k) is also periodic with periodicity of N samples.

Hence, if x(n) and X(k) are an N-point DFT pair, then

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 50

Linearity

DFT of Even and Odd Sequences

The DFT of an even sequence is purely real, and the DFT of an odd sequence is

purely imaginary. Therefore, DFT can be evaluated using cosine and sine

transforms for even and odd sequences respectively.

Time Reversal of the Sequence

The time reversal of an N-point sequence x(n) is obtained by wrapping the

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 51

sequence x(n) around the circle in the clockwise direction. It is denoted as x[(–n),

mod N] and

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 52

Circular Frequency Shift

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 53

Complex Conjugate Property

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 54

DFT of Real Valued Sequences

Multiplication of Two Sequences

Circular Convolution of Two Sequences

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 55

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 56

Parseval’s Theorem

Parseval’s theorem says that the DFT is an energy-conserving transformation and

allows us to find the signal energy either from the signal or its spectrum. This

implies that the sum of squares of the signal samples is related to the sum of squares

of the magnitude of the DFT samples.

Circular Correlation

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 57

−∞

Linear Convolution using DFT

The DFT supports only circular convolution. When two numbers of N-point sequence are

circularly convolved, it produces another N-point sequence. For circular convolution, one of

the sequence should be periodically extended. Also the resultant sequence is periodic with

period N. The linear convolution of two sequences of length N1 and N2 produces an output

sequence of length N1 + N2 – 1. To perform linear convolution using DFT, both the

sequences should be converted to N1 + N2 – 1 sequences by padding with zeros. Then take

N1 + N2 – 1-point DFT of both the sequences and determine the product of their DFTs. The

resultant sequence is given by the IDFT of the product of DFTs. [Actually the response is

given by the circular convolution of the N1 + N2 – 1 sequences]. Let x(n) be an N1-point

sequence and h(n) be an N2-point sequence. The linear convolution of x(n) and h(n) produces

a sequence y(n) of length N1 + N2 – 1. So pad x(n) with N2 – 1 zeros and h(n) with N1 – 1

zeros and make both of them of length N1 + N2 – 1. Let X(k) be an N1 + N2 – 1-point DFT of

x(n), and H(k) be an N1 + N2 – 1-point DFT of h(n). Now, the sequence y(n) is given by the

inverse DFT of the product X(k) H(k).

y(n) = IDFT {X(k)H(k)}

This technique of convolving two finite duration sequences using DFT techniques is called

fast convolution. The convolution of two sequences by convolution sum formula. This

technique of convolving two finite duration sequences using DFT techniques is called fast

convolution. The convolution of two sequences by convolution sum formula.

Y(n)=∑∞ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

is called direct convolution or slow convolution. The term fast is used because the DFT can

be evaluated rapidly and efficiently using any of a large class of algorithms called Fast

Fourier Transform (FFT). In a practical sense, the size of DFTs need not be restricted to N1 +

N2 – 1-point transforms.
Any number L can be used for the transform size subject to the restriction L _ (N1 + N2 – 1). If
L > (N1 + N2 – 1), then y(n) will have zero valued samples at the end of the period.

EXAMPLE 2.1 Find the linear convolution of the sequences x(n) and h(n) using DFT.

x(n) = {1, 2}, h(n) = {2, 1}

Solution: Let y(n) be the linear convolution of x(n) and h(n). x(n) and h(n) are of length 2

each. So the linear convolution of x(n) and h(n) will produce a 3 sample sequence (2 + 2 – 1

= 3). To avoid time aliasing, we convert the 2 sample input sequences into 3 sample

sequences by padding with zeros.

x(n) = {1, 2, 0} and h(n) = {2, 1, 0}

By the definition of N-point DFT, the 3-point DFT of x(n) is:

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 58

The sequence y(n) is obtained from IDFT of Y(k). By definition of IDFT,

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 59

 __

The linear convolution of x(n) = {1, 2} and h(n) = {2, 1} is obtained using the

tabular method as shown below.

From the above table, y(n) = {2, 1 + 4, 2} = {2, 5, 2}.

EXAMPLE 2.2 Find the linear convolution of the sequences x(n) and h(n) using DFT.
x(n) = {1, 0, 2}, h(n) = {1, 1}

Solution: Let y(n) be the linear convolution of x(n) and h(n). x(n) is of length 3 and

h(n) is of length 2. So the linear convolution of x(n) and h(n) will produce a 4-

sample sequence

(3 + 2 – 1 = 4). To avoid time aliasing, we convert the 2-sample and 3-sample

sequences into 4-sample sequences by padding with zeros.
x(n) = {1, 0, 2, 0} and h(n) = {1, 1, 0, 0}
By the definition of N-point DFT, the 4-point DFT of x(n) is:

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 60

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 61

Therefore, the linear convolution of x(n) and h(n) is:
y(n) = x(n) * h(n) = {1, 1, 2, 2}

The linear convolution of x(n) = {1, 0, 2} and h(n) = {1, 1} is obtained using the

tabular method as shown below.

From the above table, y(n) = {1, 1, 2, 2}.

OVERLAP-ADD METHOD :

In overlap-add method, the longer sequence x(n) of length L is split into m number of

smaller sequences of length N equal to the size of the smaller sequence h(n). (If required zero

padding may be done to L so that L = mN). The linear convolution of each section (of length

N) of longer sequence with the smaller sequence of length N is performed. This gives an

output sequence of length 2N – 1.
In t his method, the last N – 1 samples of each output sequence overlaps with the first N – 1
samples of next section. While combining the output sequences of the various sectioned

convolutions, the corresponding samples of overlapped regions are added and the samples of

non-overlapped regions are retained as such. If the linear convolution is to be performed by

DFT (or FFT), since DFT supports only circular convolution and not linear convolution

directly, we have to pad each section of the longer sequence (of length N) and also the smaller

sequence (of length N) with N – 1 zeros before computing the circular convolution of each

section with the smaller sequence. The steps for this fast convolution by overlap-add method

are as follows:

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 62

Step 1: N – 1 zeros are padded at the end of the impulse response sequence h(n) which isof

length N and a sequence of length 2N – 1 is obtained. Then the 2N – 1 point FFT is

performed and the output values are stored.

Step 2: Split the data, i.e. x(n) into m blocks each of length N and pad N – 1 zeros to each

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 63

Step 3: The stored frequency response of the filter, i.e. the FFT output sequence

obtained in Step 1 is multiplied by the FFT output sequence of each of the

selected block in
Step 2.
Step 4: A 2N – 1 point inverse FFT is performed on each product sequence obtained in Step 3.
Step 5: The first (N – 1) IFFT values obtained in Step 4 for each block, overlapped with the

last N – 1 values of the previous block. Therefore, add the overlapping values and keep the

non-overlapping values as they are. The result is the linear convolution of x(n) and h(n).

OVERLAP-SAVE METHOD

In overlap-save method, the results of linear convolution of the various sections are

obtained using circular convolution. Let x(n) be a longer sequence of length L and

h(n) be a smaller sequence of length N. The regular convolution of sequences of

length L and N has L + N – 1 samples. If L > N, we have to zero pad the second

sequence h(n) to length L. So their linear convolution will have 2L – 1 samples. Its

first N – 1 samples are contaminated by

wraparound and the rest corresponds to the regular convolution. To understand

this let L = 12 and N = 5. If we pad N by 7 zeros, their regular convolution has 23

(or 2L – 1) samples with 7 trailing zeros (L – N = 7). For periodic convolution, 11

samples (L – 1 = 11) are wrapped around. Since the last 7 (or L – N) are zeros

only, first four samples (2L – 1) – (L)

– (L – N) = N – 1 = 5 – 1 = 4 of the periodic convolution are contaminated by

wraparound. This idea is the basis of overlap-save method. First, we add N – 1

leading zeros to the longer sequence x(n) and section it into k overlapping (by N – 1)

segments of length M. Typically

we choose M = 2N. Next, we zero pad h(n) (with trailing zeros) to length M, and find the

periodic convolution of h(n) with each section of x(n). Finally, we discard the first N – 1

(contaminated) samples from each convolution and glue (concatenate) the results to give the

required convolution.

Step 1: N zeros are padded at the end of the impulse response h(n) which is of length N and a

sequence of length M = 2N is obtained. Then the 2N point FFT is performed
and the output values are stored.

Step 2: A 2N point FFT on each selected data block is performed. Here each data block

begins with the last N – 1 values in the previous data block, except the first data
block which begins with N – 1 zeros.
Step 3: The stored frequency response of the filter, i.e. the FFT output sequence obtained in

Step 1 is multiplied by the FFT output sequence of each of the selected blocks
obtained in Step 2.
Step 4: A 2N point inverse FFT is performed on each of the product sequences

obtained in Step 3.

Step 5: The first N – 1 values from the output of each block are discarded and the remaining

values are stored. That gives the response y(n).

In either of the above two methods, the FFT of the shorter sequence need be found only once,

stored, and reused for all subsequent partial convolutions. Both methods allow online

implementation if we can tolerate a small processing delay that equals the time required for

each section of the long sequence to arrive at the processor

Fast Fourier Transform

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 64

2.2 INTRODUCTION

The N-point DFT of a sequence x(n) converts the time domain N-point sequence x(n) to

a frequency domain N-point sequence X(k). The direct computation of an N-point

DFT requires N x N complex multiplications and N(N – 1) complex additions. Many

methods were developed for reducing the number of calculations involved. The most

popular of these is the Fast Fourier Transform (FFT), a method developed by Cooley

and Turkey. The FFT may be defined as an algorithm (or a method) for computing the

DFT efficiently (with reduced number of calculations). The computational efficiency

is achieved by adopting a divide and conquer approach. This approach is based on the

decomposition of an N-point DFT into

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 65



N 

N

successively smaller DFTs and then combining them to give the total transform.

Based on this basic approach, a family of computational algorithms were developed and

they are collectively known as FFT algorithms. Basically there are two FFT algorithms;

Decimation- in- time (DIT) FFT algorithm and Decimation-in-frequency (DIF) FFT

algorithm. In this chapter, we discuss DIT FFT and DIF FFT algorithms and the

computation of DFT by these methods.

FAST FOURIER TRANSFORM

The DFT of a sequence x(n) of length N is expressed by a complex-valued sequence X(k) as

N 1
X (K) x(n)e j2 nk/N , K 0,1, 2,....N 1 where

n 0

Let WN be the complex valued phase factor, which is an Nth root of unity given by

W e j 2 nk / N

Thus,

X(k) becomes,

N 1

X (K) x(n)W nk , K 0,1, 2, N 1

n 0

Similarly, IDFT is written

as

N 1

x(n) X (K)WN , n 0,1, 2, ... N 1 nk

n 0

From the above equations for X(k) and x(n), it is clear that for each value of k, the direct

computation of X(k) involves N complex multiplications (4N real multiplications) and N – 1

complex additions (4N – 2 real additions). Therefore, to compute all N values of DFT, N2

complex multiplications and N(N – 1) complex additions are required. In fact the DFT and

IDFT involve the same type of computations.

If x(n) is a complex-valued sequence, then the N-point DFT given in equation

for X(k) can be expressed as

X(k) = XR(k) + jXI(k)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 66

N N

N N

The direct computation of the DFT needs 2N2 evaluations of trigonometric functions,

4N2 real multiplications and 4N(N – 1) real additions. Also this is primarily inefficient

as it cannot exploit the symmetry and periodicity properties of the phase factor

WN, which are

Symmetry property

Periodicity property

W k N /2 W K

W k N W K

FFT algorithm exploits the two symmetry properties and so is an efficient algorithm for

DFT computation.

By adopting a divide and conquer approach, a computationally efficient

algorithm can be developed. This approach depends on the decomposition of an N-point

DFT into successively smaller size DFTs. An N-point sequence, if N can be expressed

as N = r1r2r3, ..., rm. where r1 = r2 = r3 = ... = rm, then N = rm, can be decimated into

r-point sequences. For each r- point sequence, r-point DFT can be computed. Hence the

DFT is of size r. The number r is called the radix of the FFT algorithm and the number

m indicates the number of stages in computation. From the results of r-point DFT, the

r2-point DFTs are computed. From the results of r2-point DFTs, the r3-point DFTs

are computed and so on, until we get rm-point DFT. If r = 2, it is called radix-2 FFT.

DECIMATION IN TIME (DIT) RADIX-2 FFT

In Decimation in time (DIT) algorithm, the time domain sequence x(n) is decimated

and smaller point DFTs are computed and they are combined to get the result of N-

point DFT.

In general, we can say that, in DIT algorithm the N-point DFT can be realized

from two numbers of N/2-point DFTs, the N/2-point DFT can be realized from two

numbers of N/4- point DFTs, and so on.

In DIT radix-2 FFT, the N-point time domain sequence is decimated into 2-point

sequences and the 2-point DFT for each decimated sequence is computed. From the

results of 2-point DFTs, the 4-point DFTs, from the results of 4-point DFTs, the 8-

point DFTs and so on are computed until we get N-point DFT.

For performing radix-2 FFT, the value of r should be such that, N = 2m. Here, the

decimation can be performed m times, where m = log2N. In direct computation

of N- point DFT, the total number of complex additions are N(N – 1) and the total

number of complex multiplications are N2. In radix-2 FFT, the total number of complex

additions are reduced to N log2N and the total number of complex multiplications are

reduced to (N/2) log2N.

Let x(n) be an N-sample sequence, where N is a power of 2. Decimate or break this

sequence into two sequences f1(n) and f2(n) of length N/2, one composed of the even

indexed values of x(n) and the other of odd indexed values of x(n).

Given sequence
x(n) : x(0), x(1), x(2),.....x(

N
1) x(N 1)

2

Even indexed sequence
Odd indexed sequence

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 67

f1(n) x(2n) : x(0), x(2), x(4), ... x(N

2)

f2 (n) x(2n 1) : x(1), x(3), x(5), .. x(N

1)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 68





 

 








We know that
the transform
X(k) of the N-
point sequence
x(n) is given

by

X (K)

N

/2

1

x(n)W nk

N

1

x(n)W

nk , K 0,1, 2, ... N 1.

n 0

N N
n N /2

X (K) N /

2

1

x(n)W nk W nk

N

1

x(n)W nk

N N N
n even n odd

When n is replaced by 2n, the even numbered samples are selected and when n is

replaced by 2n + 1, the odd numbered samples are selected. Hence,

X (K) N /

2

1

x(2n)W 2nk

N /

2

1

x(2n
1)W

(2n 1)k

n 0

N N
n 0

Rearranging each part of X(k) into (N/2)-point transforms using

W 2nk (W 2)nk − j 2

2nk
e N

 W nk

 and
W (2n 1)k (W k)W nk

N N

We can write

N / 2 1

N /2

N / 21

N N N /2

X (K) f (n)W nk W k f (n)W nk
1

n 0
N
/ 2

N 2
n 0

N / 2

By definition of DFT, the N/2-point DFT of f1(n) and f2(n) is given by

F (K) N /

2

1

f (n)W nk & F (K)

N /
2 1

f
(n) W nk

1 1
n 0

N / 2 2 2
n 0

N / 2

X (k) F (K) W k F (K),...k 0,1, 2, 3, N 1
1 N 2

The implementation of this equation for X(k) is shown in the following Figure . This first

step in the decomposition breaks the N-point transform into two (N/2)-point transforms and

the k WN provides the N-point combining algebra. The DFT of a sequence is periodic with

period given by the number of points of DFT. Hence, F1(k) and F2(k) will be periodic with

period N/2.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 69

N N

F1 (k N / 2) F1(K), &F2 (k N / 2) F2 (K)

F1 (k N / 2) F1(K), &F2 (k N / 2) F2 (K)

In addition, the phase

factor
W (k N / 2) (W k)

Therefore, for k ≥ N/2, X(k) is given by
X (K) F (k N / 2) W k F (K N / 2)

1 N 2

The implementation using the periodicity property is also shown in following Figure

Figure 2.1 Illustration of flow graph of the first stage DIT FFT algorithm for N = 8.

Having performed the decimation in time once, we can repeat the process for each of the

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 70

sequences f1(n) and f2(n). Thus f1(n) would result in two (N/4)-point sequences and

f2(n) would result in another two (N/4)-point sequences.

THE 8-POINT DFT USIKG RADIX-2 DIT FFT

The computation of 8-point DFT using radix-2 FFT involves three stages of

computation. Here N = 8 = 23, therefore, r = 2 and m = 3. The given 8-point

sequence is decimated into four 2-point sequences. For each 2-point sequence, the two

point DFT is computed. From the results of four 2-point DFTs, two 4-point DFTs are

obtained and from the results of two 4- point DFTs, the 8-point DFT is obtained.

Let the given 8-sample sequence x(n) be {x(0), x(1), x(2), x(3), x(4), x(5), x(6),

x(7)}. The 8-samples should be decimated into sequences of two samples. Before

decimation they are arranged in bit reversed order as shown in Table 2.1.

Figure 2.4 Illustration of complete flow graph obtained by combining all the three stages for N =

8.

TABLE 2.1 Normal and bit reversed order for N = 8.

Norm

a

l order Bit

reve

rsed

order

x(0) x(000) x(0) x(000)
x(1) x(001) x(4) x(100)
x(2) x(010) x(2) x(010)
x(3) x(011) x(6) x(110)
x(4) x(100) x(1) x(001)
x(5) x(101) x(5) x(101)
x(6) x(110) x(3) x(011)

x(7) x(111) x(7) x(111)

The x(n) in bit reversed order is decimated into 4 numbers of 2-point

sequences as shown below.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 71

(i) x(0) and x(4)

(ii) x(2) and x(6)

(iii) x(1) and x(5)

(iv) x(3) and x(7)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 72

N

N

2 4 8

Using the decimated seuences as input, the 8-point DFT is computed. Figure

7.5 shows the three stages of computation of an 8-point DFT.

The computation of 8-point DFT of an 8-point sequence in detail is given

below. The 8- point sequence is decimated into 4-point sequences and 2-point

sequences as shown below.

(a) (b) (c)

Figure 7.6 (a)–(c) Flow graphs for implementation of first, 2nd and 3rd stages of computation.

Butterfly Diagram

Observing the basic computations performed at each stage, we can arrive at the

following conclusions:

(i) In each computation, two complex numbers a and b are considered.

(ii) The complex number b is multiplied by a phase factor Wk .

(iii) The product bWk is added to the complex number a to form a new complex number A.
(i) The product bWk

N
number B.

is subtracted from complex number a to form new complex

The above basic computation can be expressed by a signal flow graph shown in

Figure 7.7. The signal flow graph is also called butterfly diagram since it resembles a

butterfly.

Figure 7.7 Basic butterfFy diagram or fFow graph of radix–2 DI† FF†.

The complete flow graph for 8-point DIT FFT considering periodicity drawn

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 73
















N

N N N N

in a way to remember easily is shown in Figure 7.8. In radix-2 FFT, N/2 butterflies per

stage are required to represent the computational process. In the butterfly diagram for

8-point DFT shown in Figure 7.8, for symmetry, W 0 , W 0 and W 0 are shown on the

graph eventhough they are unity. The subscript 2 indicates that it is the first stage of

computation. Similarly, subscripts 4 and 8 indicate the second and third stages of

computation.

Figure 7.8 †he signal flow graph or butterfly diagram for 8–point radix–2 DIT FFT.

N 1
X (K) x(n)W nk

N /

2

1

x(n)W nk W

nk

N

1

x(n)W nk

N / 2 1

n 0

x(n)W

nk

W

n

0
N /
2
1

n
k

x(n N /
2)W

n N /

2

(n N /

2)k

n 0

N N N
n N / 2

It is important to observe that while the above equation for X(k) contains two summations

over N/2-points, each of these summations is not an N/2-point

DFT, since

W nk N/2

Wnk rather than

X (K)

N /

2

1

x(n)W

nk

W

(N /

2)k

N /

2

1

x(n N / 2)W nk

n 0

N N N
n 0

N / 2 1

x(n)W

nk
 (1)nk x(n

N

)W
nk

n 0 2
N N

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 74









N / 2 1

x(n) (1)nk x(n

N
) W nk

n 0 2
N

Let us split X(k) into even and odd numbered samples. For even values of k, the X(k)
can be written as

N / 2 1 X (2K)

x(n) (1)2k x(n

N

)W
2nk

n 0 2
N

N / 2 1

x(n) x(n

N
) W nk

n 0 2
N

For odd values of k, the X(k) can be written as

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 75







N / 2 1 X (2K 1)

x(n) (1)2k 1 x(n

N

)W
(2k 1)n

n 0 2
N

N / 2 1

x(n) x(n

N

) W
nkW nk

n 0 2 N N /2

The above equations for X(2k) and X(2k + 1) can be recognized as N/2-point DFTs. X(2k) is

the DFT of the sum of first half and last half of the input sequence, i.e. of
{x(n) + x(n + N/2)} and X(2k + 1) is the DFT of the product W n with the difference of first

half and last half of the input, i.e.

of

N
{x(n) x(n + N/2)}WN

n
.

If we define new time domain sequences, u1(n) and u2(n) consisting of N/2-samples, such that

then the DFTs U1(k) = X(2k) and U2(k) = X(2k + 1) can be computed by first forming

the sequences u1(n) and u2(n), then computing the N/2-point DFTs of these two

sequences to obtain the even numbered output points and odd numbered output points

respectively. The procedure suggested above is illustrated in Figure 7.9 for the case

of an 8-point sequence.

Figure 7.9 FFow graph of the DIF decomposition of an N–point DF†
computation into two N/2–point DF† computations N = 8.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 76

N

Now each of the N/2-point frequency domain sequences, U1(k) and U2(k) can be

decimated into two numbers of N/4-point sequences and four numbers of new N/4-point

sequences can be obtained from them.

Let the new sequences be v11(n), v12(n), v21(n), v22(n). On similar lines as

discussed above, we can get

This process is continued till we get only 2-point sequences. The DFT of those 2-

point sequences is the DFT of x(n), i.e. X(k) in bit reversed order.

The third stage of computation for N = 8 is shown in Figure 7.11.

The entire process of decimation involves m stages of decimation where m =

log2N. The computation of the N-point DFT via the DIF FFT algorithm requires

(N/2) log2N complex multiplications and (N – 1) log2N complex additions (i.e. total

number of computations remains same in both DIF and DIT).

Observing the basic calculations, each stage involves N/2 butterflies of the

type shown in Figure 7.12.
The butterfly computation involves the following operations:

(i) In each computation two complex numbers a and b are considered.

(ii) The sum of the two complex numbers is computed which forms a new

complex number A.
(iii) Subtract the complex number b from a to get the term (a – b). The difference term

(a – b) is multiplied with the phase factor or twiddle

factor complex number B.

Figure 7.12 Basic butterfFy diagram

for DIF FI†.

W n to form a new

The signal flow graph or butterfly diagram of all the three stages together is shown in

Figure 7.13.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 77

TKE 8-POINT DFT USIKG RADIX-2 DIF FFT

The DIF computations for an 8-sample sequence are given below in detail.

Let x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)} be the given 8-sample sequence.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 78

First stage of COMPUTATION

In the first stage of computation, two numbers of 4-point sequences u1(n) and

u2(n) are obtained from the given 8-point sequence x(n) as shown below.

Figure 7.13 SignaF fFow graph or butterfFy diagram for the 8–point radix–2 DIF FF†

aFgorithm.

Seconb stage of CONPUTATION

In the second stage of computation, four numbers of 2-point sequences v11(n), v12(n)

and v21(n), v22(n) are obtained form the two 4-point sequences u1(n) and u2(n)

obtained in stage one

Thirb stage of CONPUTATION

In the third stage of computation, the 2-point DFTs of the 2-point sequences obtained

in the second stage . The computation of 2-point DFTs is done by the butterfly

operation shown in

Figure 7.14(c).

Figure 7.14 (a)–(c) †he first, second and third stages of computation of 8–point DF† by Radix–2

DIF FF†.

CONPARISON of DlT (DECIMATION-IN-TINE) and DlF (DECINATION-IN-

FREQUENCY) ALGORITHMS

Difference between DIT and DIF

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 79

1. In DIT, the input is bit reversed while the output is in normal order. For DIF,

the reverse is true, i.e. the input is in normal order, while the output is bit

reversed. However, both DIT and DIF can go from normal to shuffled data

2. or vice versa.

3. Considering the butterfly diagram, in DIT, the complex multiplication takes

place before the add subtract operation, while in DIF, the complex

multiplication takes place after the add subtract operation.

Similarities

1. Both algorithms require the same number of operations to compute DFT.

2. Both algorithms require bit reversal at some place during computation.

7.6.f Computation of IDFT through FFT

The term inside the square brackets in the above equation for x(n) is same as the DFT

computation of a sequence X*(k) and may be computed using any FFT algorithm. So

we can say that the IDFT of X(k) can be obtained by finding the DFT of X*(k), taking

the conjugate of that DFT and dividing by N. Hence, to compute the IDFT of X(k) the

following procedure can be followed

1. Take conjugate of X(k), i.e. determine X*(k).

2. Compute the N-point DFT of X*(k) using radix-2 FFT.

3. Take conjugate of the output sequence of FFT.

4. Divide the sequence obtained in step-3 by N.

The resultant sequence is x(n).Thus, a single FFT algorithm serves the evaluation of both

direct and inverse DFTs.

EXAMPLE 1 Draw the butterfly line diagram for 8-point FFT calculation and briefly

explain. Use decimation-in-time algorithm.

Solution: The butterfly line diagram for 8-point DIT FFT algorithm is shown in

following Figure

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 80

Solution: For 8-point DIT FFT

1. The input sequence x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)},

2. bit reversed order, of input as i.e. as xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3),

x(7)}. Since N = 2m = 23, the 8-point DFT computation

3. Radix-2 FFT involves 3 stages of computation, each stage involving 4 butterflies. The output

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 81

Figure : Butterfly Fine diagram for 8–point DIT FFT algorithm for N = 8.

EXAMPLE 2 Implement the decimation-in-frequency FFT algorithm of N-point DFT where

N = 8. Also explain the steps involved in this algorithm.

Solution: The 8-point radix-2 DIF FFT algorithm

1. It involves 3 stages of computation. The input to the first stage is the input time

sequence x(n) in normal order. The output of first stage is the input to the second

stage and the output of second stage is the input to the third stage. The output of

third stage is the 8- point DFT in bit reversed order.

2. In DIF algorithm, the frequency domain sequence X(k) is decimated.

3. In this algorithm, the N-point time domain sequence is converted to two numbers of

N/2- point sequences. Then each N/2-point sequence is converted to two numbers of

N/4-point sequences. Thus, we get 4 numbers of N/4, i.e. 2-point sequences.

4. Finally, the 2-point DFT of each 2-point sequence is computed. The 2-point DFTs of

N/2 number of 2-point sequences will give N-samples which is the N-point DFT of

the time domain sequence. The implementation of the 8-point radix-2 DIF FFT

algorithm is shown in Figure 7.16.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 82

Figure 7.16 Butterfly Fine diagram for 8–point radix–2 DIF FFT algorithm.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 83

EXAMPLE 7.4 What is FFT? Calculate the number of multiplications needed in the

calculation of DFT using FFT algorithm with 32-point sequence.

Solution: The FFT, i.e. Fast Fourier transform is a method (or algorithm) for

computing the DFT with reduced number of calculations. The computational efficiency

is achieved by adopting a divide and conquer approach. This approach is based on the

decomposition of an N- point DFT into successively smaller DFTs. This basic approach

leads to a family of efficient computational algorithms known as FFT algorithms.

Basically there are two FFT algorithms. (i) DIT FFT algorithm and (ii) DIF FFT

algorithm. If the length of the sequence N = 2m, 2 indicates the radix and m indicates

the number of stages in the computation. In radix-2 FFT, the N-point sequence is

decimated into two N/2-point sequences, each N/2-point sequence is decimated into two

N/4-point sequences and so on till we get two point sequences. The DFTs of two

point sequences are computed and DFTs of two 2-point sequences are combined into

DFT of one 4-point sequence, DFTs of two 4-point sequences are combined into DFT

of one 8-point sequence and so on till we get the N-point DFT.

The number of multiplications needed in the computation of DFT using FFT

algorithm with N = 32-point sequence is =
N

log N =
32

log 25 = 80 .

2 2 2 2

The number of complex additions
= N log2 N = 32 log2 32 = 32 log2 2

5 = 160

EXAMPLE 7.5 Explain the inverse FFT algorithm to compute inverse DFT of a

8-point DFT. Draw the flow graph for the same.

Solution: The IDFT of an 8-point sequence {X(k), k = 0, 1, 2, ..., 7} is defined as

The term inside the square brackets in the RHS of the above expression for x(n) is the 8-

 point DFT of X *(k).

Hence, in order to compute the IDFT of X(k) the following procedure can be followed:

1. Given X(k), take conjugate of X (k) i.e. determine X *(k).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 84

2. Compute the DFT of X*(k) using radix-2 DIT or DIF FFT, [This gives 8x*(n)]

1. Take conjugate of output sequence of FFT. This gives 8x(n).

2. Divide the sequence obtained in step 3 by 8. The resultant sequence is x(n).

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 85

0 0

= nk nk

The flow graph for computation of N = 8-point IDFT using DIT FFT algorithm is

shown in Figure 7.18.

Figure 7.18 Computation of 8–point DF† of X*(k) by radix–2, DI† FF†.

From Figure 7.18, we get the 8-point DFT of X*(k) by DIT FFT as

8x*(n) = {8x* (0), 8x*(1), 8x* (2), 8x* (3), 8x*(4), 8x* (5), 8x* (6), 8x* (7)}

1 * * *
* * *

* * *

x(n) = {8x (0), 8x (1),
8x

8

(2),
8x

(3), 8x (4),
8x

(5),
8x

(6), 8x (7)}

EXAMPLE 7.11 Compute the DFT of the sequence x(n) = {1, 0, 0, 0, 0, 0, 0, 0} (a) directly,

(b) by FFT.

Solution: (a) Direct computation of DFT

The given sequence is x(n) = {1, 0, 0, 0, 0, 0, 0, 0}. We have to compute 8-point DFT. So

N = 8.

N 1 DFT {x(n)} = X(k) = x(n) e

j 2

nk
N 1 7 x(n) W = x(n) W

N
N 8

n n n 0

−

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 86

8 8

8 8 8 8 8 8 8 8 = x(0)W 0 + x(1)W 1 + x(2)W 2 + x(3)W 3 + x(4) W 4 + x(5)W 5 + x(6)W 6 + x(7)W 7

= (1) (1) + (0) (W8
1) + (0)W8

2 + (0) W8
3 + (0)W8

4 + (0)W 5 + (0)W 6 + (0)W 78= 1

X(k) = 1 for all k

X(0) = 1, X(1) = 1, X(2) = 1, X(3) = 1, X(4) = 1, X(5) = 1, X(6) = 1, X(7) = 1

X(k) = {1, 1, 1, 1, 1, 1, 1, 1}

(b) Computation by FFT. Here N = 8 = 23

The computation of 8-point DFT of x(n) = {1, 0, 0, 0, 0, 0, 0, 0} by radix-2 DIT

FFT algorithm is shown in Figure 7.31. x(n) in bit reverse order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}

= {1, 0, 0, 0, 0, 0, 0, 0}

For DIT FFT input is in bit reversed order and output is in normal order.

From Figure 7.31, the 8-point DFT of the given x(n) is X(k) = {1, 1, 1, 1, 1, 1, 1, 1}

EXAMPLE 7.12 An 8-point sequence is given by x(n) = {2, 2, 2, 2, 1, 1, 1, 1}.

Compute the 8-point DFT of x(n) by

(a) Radix-2 DIT FFT algorithm

(b) Radix-2 DIF FFT algorithm

Also sketch the magnitude and phase spectrum.

Solution: (a) 8-point DFT by Radix-2 DIT FFT algorithm

The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}

= {2, 2, 2, 2, 1, 1, 1, 1}

The given sequence in bit reversed order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}

= {2, 1, 2, 1, 2, 1, 2, 1}

For DIT FFT, the input is in bit reversed order and the output is in normal order. The

computation of 8-point DFT of x(n), i.e. X(k) by Radix-2 DIT FFT algorithm is shown

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 87

in Figure 7.32.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 88

From Figure 7.32, we get the 8-point DFT of x(n) as

X(k) = {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

(b) 8-point DFT by radix-2 DIF FFT algorithm

For DIF FFT, the input is in normal order and the output is in bit reversed order. The

computation of DFT by radix-2 DIF FFT algorithm is shown in Figure 7.33.

Figure 7.33 Computation of 8–point DF† of x(n) by radix–2 DIF FF† aFgorithm.

From Figure 7.33, we observe that the 8-point DFT in bit reversed order is

Xr (k) = {X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)}

= {12, 0, 0, 0, 1 j2.414, 1 + j0.414, 1 j0.414, 1 + j2.414}

The 8-point DFT in normal order is

X(k) = {X(0), X(1), X(2), X(3), X(4), X (5), X(6), X(7)}

= {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

Magnitude and Phase Spectrum

Each element of the sequence X(k) is a complex number and they are expressed in

rectangular coordinates. If they are converted to polar coordinates, then the magnitude

and phase of each element can be obtained.

The magnitude spectrum is the plot of the magnitude of each sample of X(k) as

a function of k. The phase spectrum is the plot of phase of each sample of X(k) as a

function of k. When N-point DFT is performed on a sequence x(n) then the DFT

sequence X(k) will have a periodicity of N. Hence, in this example, the magnitude and

phase spectrum will have a periodicity of 8 as shown below.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 89

X(k) = {12, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

= {12 0 , 2.61 67 , 0 0 , 1.08 22 , 0 0 , 1.08 22 , 0 0 , 2.61 67

= {12 0, 2.61 0.37 , 0 0 , 1.08 0.12 , 0 0 , 1.08 0.12 , 0 0 , 2.61 0.37 }

X(k) = {12, 2.61, 0, 1.08, 0, 1.08, 0, 2.61}

= {0, 0.37 , 0, 0.12 , 0, 0.12 , 0, 0.37 }

The magnitude and phase spectrum are shown in Figures 7.34(a) and (b).

Figure 7.34 (a) Magnitude spectrum, (b) Phase spectrum.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

x(n) = {2, 1, 2, 1, 2, 1, 2, 1}

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}

= {2, 1, 2, 1, 2, 1, 2, 1}

For DIT FFT computation, the input sequence must be in bit reversed order and the

output sequence will be in normal order.
x(n) in bit reverse order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}

= {2, 2, 2, 2, 1, 1, 1, 1}

The computation of 8-point DFT of x(n) by radix-2 DIT FFT algorithm is shown in Figure 7.35.

From Figure 7.35, we get the 8-point DFT of x(n) as X(k) = {12, 0, 0, 0, 4, 0, 0, 0}

}

X(k)

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 90

Figure 7.35 Computation of 8–point DF† of x(n) by radix–2, DI† FF†.

EXAMPLE 7.14 Compute the DFT for the sequence x(n) = {1, 1, 1, 1, 1, 1, 1, 1}.

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}

= {1, 1, 1, 1, 1, 1, 1, 1}

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm

is shown in Figure 7.36.

The given sequence in bit reversed order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}

= {1, 1, 1, 1, 1, 1, 1, 1}

For DIT FFT, the input is in bit reversed order and output is in normal order.

Figure 7.36 Computation of 8–point DF† of x(n) by radix–2, DI† FF†.

From Figure 7.36, we get the 8-point DFT of x(n) as X(k) = {8, 0, 0, 0, 0, 0, 0, 0}.

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 91

EXAMPLE 7.15 Given a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1}, determine X(k)

using DIT FFT algorithm.

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}

= {1, 2, 3, 4, 4, 3, 2, 1}

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm

is shown in Figure 7.37. For DIT FFT, the input is in bit reversed order and the output

is in normal order.

The given sequence in bit reverse order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)} = {1, 4, 3, 2, 2, 3, 4, 1}

Figure 7.37 Computation of 8–point DF† of x(n) by radix–2, DI† FF†.

From Figure 7.37, we get the 8-point DFT of x(n) as

X(k) = {20, 5.828 j2.414,
0,

0.172
 j0.41
4,

0,

0.172 +
j0.414,

0,

5.828 + j2.414}

EXAMPLE 7.16 Given a sequence x(n) = {0, 1, 2, 3, 4, 5, 6, 7}, determine X(k)

using DIT FFT algorithm.

Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}

= {0, 1, 2, 3, 4, 5, 6, 7}

The computation of 8-point DFT of x(n), i.e. X(k) by radix-2, DIT FFT algorithm is shown

in Figure 7.38. For DIT FFT, the input is in bit reversed order and output is in normal order.

The given sequence in bit reverse order is

xr(n) = {x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)}

= {0, 4, 2, 6, 1, 5, 3, 7}

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 92

Figure 7.38 Computation of 8–point DF† of x(n) by radix–2, DI† FF†.

From Figure 7.38, we get the 8-point DFT of x(n) as

X(k) = {28, 4 + j9.656, 4 + 4 + 4 j1.656, 4 j4,

 j9.656
}

j4, j1.656, 4, 4

EXAMPLE 7.18 Find the IDFT of the sequence

X(k) = {4, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414}

using DIF algorithm.

Solution: The IDFT x(n) of the given 8-point sequence X(k) can be obtained by finding

X*(k), the conjugate of X(k), finding the 8-point DFT of X*(k), using DIF algorithm to get

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 93

r

8x*(n), taking the conjugate of that to get 8x(n) and then dividing the result by 8 to get

x(n). For DIF algorithm, input X *(k) must be in normal order. The output will be

in bit reversed order for the given X(k).

X*(k) = {4, 1 + j2.414, 0, 1 + j0.414, 0, 1
 j0.414, 0,

1

j2.414}

The DFT of X*(k) using radix-2, DIF FFT algorithm is computed as shown in Figure 7.42.

Figure 7.42 Computation of 8–point DF† of X*(k) by radix–2 DIF FF†.

From the DIF FFT algorithm of Figure 7.42, we get

8x* (n) = {8, 0, 8, 0, 8, 0, 8, 0}

8xr (n) = {8, 0, 8, 0, 8, 0, 8, 0}* = {8, 0, 8, 0, 8, 0, 8, 0}
1

x(n) = {8, 8, 8, 8, 0, 0, 0, 0} = {1, 1, 1, 1, 0, 0, 0, 0}
8

EXAMPLE 7.19 Compute the IDFT of the sequence

X(k) = {7, 0.707 j0.707,

j,

using DIT

algorithm.

0.707 j0.707, 1, 0.707 +

j0.707,

0.707 + j0.707}

Solution: The IDFT x(n) of the given sequence X(k) can be obtained by finding X*(k),

the conjugate of X(k), finding the 8-point DFT of X*(k) using radix-2 DIT FFT

algorithm to get 8x*(n), taking the conjugate of that to get 8x(n) and then dividing by 8

to get x(n). For DIT FFT, the input X*(k) must be in bit reverse order. The output

8x*(n) will be in normal order. For the given X(k).

X* (k) = {7, 0.707 + j0.707, j, 0.707 + j0.707, 1, 0.707

j0.707,

X*(k) in bit reverse order is

j, 0.707 j0.707}

Xr (k) = {7, 1, j, j, 0.707 + j0.707,
0.707

j0.707, 0.707 + j0.707, 0.707 j0.707}

j,

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 94

The 8-point DFT of X*(k) using radix-2, DIT FFT algorithm is computed as

shown in Figure 7.43.

Figure 7.43 Computation of 8–point DF† of X*(k) by radix–2, DI† FF†.

From the DIT FFT algorithm of Figure 7.43, we have

8x*(n) = {8, 8, 8, 8, 8, 8, 8, 0}

8x(n) = {8, 8, 8, 8, 8, 8, 8, 0}

x(n) = {1, 1, 1, 1, 1, 1, 1, 0}

EXAMPLE 7.20 Compute the IDFT of the square wave sequence X(k) = {12, 0, 0, 0, 4, 0,

0, 0} using DIF algorithm.

Solution: The IDFT x(n) of the given sequence X(k) can be obtained by finding X*(k),

the conjugate of X(k), finding the 8-point DFT of X*(k) using DIF algorithm to get

8x*(n) taking the conjugate of that to get 8x(n) and then dividing the result by 8 to get

x(n). For DIF algorithm, the input X*(k) must be in normal order and the output 8x*(n)

will be in bit reversed order.

For the given X(k)

X*(k) = {12, 0, 0, 0, 4, 0, 0, 0}

The 8-point DFT of X*(k) using radix-2, DIF FFT algorithm is computed as shown in

Figure 7.44.

From Figure 7.44, we have

8 xr
* (n) = {16, 16, 16, 16, 8, 8, 8, 8}

8xr (n) = {16, 16, 16, 16, 8, 8, 8, 8}* = {16, 16, 16, 16, 8, 8, 8, 8}

x(n) =
1

{16, 8, 16, 8, 16, 8, 16, 8} = {2, 1, 2, 1, 2, 1, 2, 1}

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 95

ECE DEPARTMENT, NCERC, PAMPADY

ECT 303 DIGITAL SIGNAL PROCESSING

Page | 96

0.65

0

Hamming Window side lobe oscillations are lesser when compared to Hanning Window

H

H

i

-

sT

T

2

1-2

k=1

N

k=1

N

t= (nT-T)

)

]

H(s)= b/(s+a)

